Abstract
Two field-programmable gate array (FPGA) designs are tested for dynamic single event upset (SEU) sensitivity on two different 28-nm static random access memory-based FPGAs—an Intel Stratix V and a Xilinx Kintex 7 FPGA. These designs were tested in both a conventional unmitigated version and a version to tolerate SEUs with feedback triple modular redundancy (TMR). The unmitigated design sensitivity and the low-level device sensitivity were found to be similar between the devices through neutron radiation testing. Results also show that feedback TMR and configuration scrubbing benefit both designs on both FPGAs. While TMR is helpful, the benefit of TMR depends on the design structure and the device architecture. TMR and scrubbing reduced dynamic SEU sensitivity by a factor of 4– $54\times $ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.