Abstract

The majority of high-speed railways around the world is in China and more than 90% of the high-speed railways in China are double-line. At present, studies on the dynamic responses of subgrade under double-line high-speed railways are quite limited due to the complexity of these railways. In this study, a three-dimensional finite element model was developed using ABAQUS software for a double-line ballastless track-subgrade system subject to 8-carriage moving constant loads. The dynamic responses (specifically the vertical stress, displacement, velocity and acceleration) were determined at three points on the subgrade surface (Point A, Point B, and Point C) for trains travelling at different speeds (250, 300, and 360 km/h) and line patterns (unidirectional and bidirectional operations). The vertical stress distributions at selected points on the subgrade surface at these train speeds and line patterns are presented, and the vertical stress distributions along the soil depth of the subgrade at Point A and Point B are discussed. The key findings of this study are as follows. The maximum vertical displacement at the three observation points decreases as the train speed increases whereas the absolute maximum vertical velocity slightly increases as the train speed increases. In bidirectional operation, the maximum vertical stresses occur under the rails on the subgrade surface and the stress distributions are asymmetric. At Point A (point on the subgrade surface underneath the left rail in the left line), the vertical stress decreases along the soil depth and the vertical stress attenuation is more pronounced for bidirectional operation. However, at Point B (point at the centre of the subgrade surface), the vertical stress increases along the soil depth. The vertical stresses at Point A and Point B tend to be close to one another with an increase in soil depth such that the values are nearly coincident in the embankment layer within the range of train speeds investigated in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call