Abstract

A linear lumped model was proposed for the hippocampal CA 1 region of anesthetized rats using differential equations of time-independent coefficients, the afferent and efferent fibers of the alveus as inputs and the averaged evoked potentials (AEPs) and poststimulus time histograms as outputs. The alvear tract, a major efferent path, was proposed to activate interneurons monosynaptically while the anterior alveus activated orthodromically pyramidal cells which then excited the interneurons. The interneurons then inhibited pyramidal cells. The observable field outputs were the excitatory postsynaptic potentials (EPSPs) of interneurons and the inhibitory postsynaptic potentials (IPSPs) of pyramidal cells. Positive neurophysiological feedbacks were proposed among interneurons and among pyramidal cells in order to account for the prolonged time courses of the interneuronal EPSPs and the pyramidal cell IPSPs. The parameters of the model were optimized by a nonlinear regression program which minimized the sum of squared deviations between the model-generated and actual AEPs. The parameters included the temporal dispersion of the input tract (about 3 ms) and the membrane time constant of interneuronal and pyramidal cell populations (4.8 ms). In anesthetized rats, positive feedback gain coefficients were 0.07 among interneurons and 0.85 among pyramidal cells. After a compound spike (I), two postsynaptic AEP components (II and III) of different time courses were detectable at all depths within CA 1 except at the turnover for each component. The hypothesis that the AEP component II was generated by interneurons was tested and confirmed. The quantitative model constitutes a concise construct of the functional organization of the hippocampal CA 1 region, which suggests further theoretical extensions and experimentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call