Abstract

We investigate the Johari-Goldstein (JG) [Formula: see text]-relaxation process in a model metallic glass-forming (GF) material ([Formula: see text]), previously studied extensively by both frequency-dependent mechanical measurements and simulation studies devoted to equilibrium properties, by molecular dynamics simulations based on validated and optimized interatomic potentials with the primary aim of better understanding the nature of this universal relaxation process from a dynamic heterogeneity (DH) perspective. The present relatively low temperature and long-time simulations reveal a direct correspondence between the JG [Formula: see text]-relaxation time [Formula: see text] and the lifetime of the mobile particle clusters [Formula: see text], defined as in previous DH studies, a relationship dual to the corresponding previously observed relationship between the [Formula: see text]-relaxation time [Formula: see text] and the lifetime of immobile particle clusters [Formula: see text]. Moreover, we find that the average diffusion coefficient D nearly coincides with [Formula: see text] of the smaller atomic species (Al) and that the 'hopping time' associated with D coincides with [Formula: see text] to within numerical uncertainty, both trends being in accord with experimental studies. This indicates that the JG [Formula: see text]-relaxation is dominated by the smaller atomic species and the observation of a direct relation between this relaxation process and rate of molecular diffusion in GF materials at low temperatures where the JG [Formula: see text]-relaxation becomes the prevalent mode of structural relaxation. As an unanticipated aspect of our study, we find that [Formula: see text] exhibits fragile-to-strong (FS) glass formation, as found in many other metallic GF liquids, but this fact does not greatly alter the geometrical nature of DH in this material and the relation of DH to dynamical properties. On the other hand, the temperature dependence of the DH and dynamical properties, such as the structural relaxation time, can be significantly altered from 'ordinary' GF liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call