Abstract

Modern high-performance computing system design is becoming increasingly aware of the energy proportional computing to lower the operational costs and raise reliability. At the same time, high-performance application developers are taking pro-active steps towards less energy consumption without a significant performance loss. One way to accomplish this is to change the processor frequency dynamically during application execution. In this paper, a representative computationally-intensive HPC application GAMESS is considered with the aim to investigate the energy saving potential of its various stages. GAMESS is a quantum chemistry software package used worldwide to perform {em ab initio} electronic structure calculations. This paper presents energy consumption characteristics of two Self-Consistent Field method implementations in GAMESS, which radically differ in their computer resource usages. The dynamic frequency scaling optimization is applied to these implementations and serves as verification for the proposed general energy savings model. The developed model provides the minimum of on the compute node energy consumption under a given performance loss tolerance for various processor frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.