Abstract
We investigate the use of deep neural network (DNN) models for energy optimization under performance constraints in chip multiprocessor systems. We introduce a dynamic energy management algorithm implemented in three phases. In the first phase, training data is collected by running several selected instrumented benchmarks. A training data point represents a pair of values of cores’ workload characteristics and of optimal voltage/frequency (V/F) pairs. This phase employs Kalman filtering for workload prediction and an efficient heuristic algorithm based on dynamic voltage and frequency scaling. The second phase represents the training process of the DNN model. In the last phase, the DNN model is used to directly identify V/F pairs that can achieve lower energy consumption without performance degradation beyond the acceptable threshold set by the user. Simulation results on 16 and 64 core network-on-chip based architectures demonstrate that the proposed approach can achieve up to 55 percent energy reduction for 10 percent performance degradation constraints. In addition, the proposed DNN approach is compared against existing approaches based on reinforcement learning and Kalman filtering and found that it provides average improvements in energy-delay-product (EDP) of 6.3 and 6 percent for the 16 core architecture and of 7.4 and 5.5 percent for the 64 core architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Multi-Scale Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.