Abstract

The incidence of neurological complications, including stroke and cognitive dysfunction, is elevated in patients with heart failure (HF) with reduced ejection fraction. We hypothesized that the cerebrovascular response to isometric handgrip (iHG) is altered in patients with HF. Adults with HF and healthy volunteers were included. Cerebral blood velocity (CBV; transcranial Doppler, middle cerebral artery) and arterial blood pressure (BP; Finometer) were continuously recorded supine for 6 min, corresponding to 1 min of baseline and 3 min of iHG exercise, at 30% maximum voluntary contraction, followed by 2 min of recovery. The resistance-area product was calculated from the instantaneous BP-CBV relationship. Dynamic cerebral autoregulation (dCA) was assessed with the time-varying autoregulation index estimated from the CBV step response derived by an autoregressive moving-average time-domain model. Forty patients with HF and 23 BP-matched healthy volunteers were studied. Median left ventricular ejection fraction was 38.5% (interquartile range: 0.075%) in the HF group. Compared with control subjects, patients with HF exhibited lower time-varying autoregulation index during iHG, indicating impaired dCA ( P < 0.025). During iHG, there were steep rises in CBV, BP, and heart rate in control subjects but with different temporal patterns in HF, which, together with the temporal evolution of resistance-area product, confirmed the disturbance in dCA in HF. Patients with HF were more likely to have impaired dCA during iHG compared with age-matched control subjects. Our results also suggest an impairment of myogenic, neurogenic, and metabolic control mechanisms in HF. The relationship between impaired dCA and neurological complications in patients with HF during exercise deserves further investigation. NEW & NOTEWORTHY Our findings provide the first direct evidence that cerebral blood flow regulatory mechanisms can be affected in patients with heart failure during isometric handgrip exercise. As a consequence, eventual blood pressure modulations are buffered less efficiently and metabolic demands may not be met during common daily activities. These deficits in cerebral autoregulation are compounded by limitations of the systemic response to isometric exercise, suggesting that patients with heart failure may be at greater risk for cerebral events during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.