Abstract
Different cerebral blood flow (CBF) responses to exercise between the posterior cerebral artery (PCA) and vertebral artery (VA) have been previously observed, though the physiological mechanisms remain unknown. There is regional heterogeneity in sympathetic innervation between the PCA and VA, which may affect CBF regulation, especially during sympathoexcitation. Thus, in the present study, we hypothesized that different CBF regulatory mechanisms between PCA and VA contribute to heterogeneous CBF responses to isometric exercise. To test this hypothesis, in thirteen healthy young men, dynamic cerebral autoregulation (CA) and cerebrovascular CO2 reactivity (CVR), were identified in each artery during a 2-min isometric handgrip (IHG) exercise at 30% of maximum voluntary contraction. Similar to previous data, PCA cerebrovascular conductance (CVC) index was decreased from rest (P<0.004), but not VA CVC during IHG exercise (P>0.084). Dynamic CA in both PCA and VA were unaltered during the IHG exercise (P=0.129). On the other hand, PCA CVR was increased during the IHG exercise (P<0.001) while VA CVR was unchanged (P=0.294). In addition, individual exercise-induced changes in end-tidal partial pressure of CO2 was related to the individual change in PCA blood velocity (P<0.046), but was not observed for VA blood flow (P>0.420). Therefore, these exercise-induced differences in CVR between PCA and VA may contribute to exercise-induced heterogeneous CBF response in the posterior cerebral circulation. These findings indicate that the site-specific posterior CBF should be considered in further research for assessing posterior cerebral circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.