Abstract

316L steel specimens with three different shear zones made by SLM (Selective Laser Melting) were subjected to dynamic tests using the Split Hopkinson Pressure Bar method. The effect of high-speed deformation on changes in microstructure was analyzed. In addition, the stress-strain relationship was determined from the SHPB results. To visualize the deformation process of the specimens during the tests, a camera with a high frame rate was used. It was shown that as the plastic deformation increases, the hardness of the material increases. Microstructural analysis of dynamically loaded areas revealed numerous defects. Twinning was found to be the main deformation mechanism. Large plastic deformation and many other microstructural changes such as shear bands, cracks and martensite nucleation were also observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.