Abstract

The dynamic modelling of a simply-supported thin laminated plate subject to in-plane excitation is established based on the classic shear theory and von Kármán nonlinear theory. The method of multiple scales is used to determine an approximate solution for the system. According to solvability conditions, the nonlinear modulation equations arising from the principal parametric resonances are obtained and two possible nontrivial solutions are performed. To analyze the nonlinear dynamic response of the plate embedded with auxetic layers, 5-layered sandwich plate, in which two auxetic elastic layers are alternatively sandwiched between three positive Poisson’s ratio (PPR) elastic ones, is presented. The natural frequency of model (m, n) shows an increase with respect to the absolute value of Poisson’s ratio. Particularly, the amplitude-frequency responses of the laminated plate subject to principal parametric resonance are analyzed for different values of Poisson’s ratio. Moreover, it can be found that for model (m, n), there must be some certain value or interval of negative Poisson’s ratio (NPR), which, results in zero response effect, in other words, the in-plane excitation will be ineffective for this model when the Poisson’s ratio just lies at such a value or interval. Furthermore, it can also be observed that the certain interval of Poisson’s ratio becomes wider with the increase of damping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call