Abstract

Building structures are typically designed using the assumption that the floor systems serve as a rigid diaphragm between the vertical elements of the lateral load-resisting system. However, long-floor span structures with perimeter lateral load-resisting systems possess diaphragms which behave quite flexibly. The dynamic behaviour of such structures is dissimilar to the behavior expected of typical structures. This difference can lead to unexpected force and drift patterns. If force levels are sufficiently under-estimated, inelastic diaphragm behaviour can occur, exacerbating the effects of diaphragm flexibility. Such response may lead to a non-ductile diaphragm failure or structural instability due to high drift demands in the gravity system. Analytical models were developed which capture the diaphragm flexibility of structures with long-floor spans and perimeter lateral-systems. Modal examination and time-history analyses were performed to determine the effect of diaphragm flexibility and diaphragm inelastic behaviour on the dynamic behaviour of these structures. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.