Abstract

The flexibility of floor diaphragms has a significant influence on the behavior of building structures. Commonly, in analyzing structures, floor diaphragms are considered rigid. This assumption distributes lateral loads between the resistant elements according to their rigidities, and decreases the degree of freedom that creates easier analysis. However, in steel structures with braced frames and long span floors, diaphragms usually behave flexibly. The seismic responses of such structures vary to the expected response of typical rigid floor structures. Ignoring the effects of diaphragm flexibility can lead to non-economic or unsafe structural design. In this paper, the nonlinear responses of braced steel buildings with flexible concrete block-joist floor diaphragms are investigated under both static lateral load and dynamic ground motion, and they are compared with the responses of structures with the assumption of rigid diaphragms. This study demonstrates that span ratio is an important parameter in the flexibility of floor diaphragms, and if this ratio exceeds three, the variation of results between the two assumptions of flexible and rigid diaphragms may not be ignored. In addition, results show that diaphragm flexibility changes the seismic response of the structures and linear analysis is not sufficient to explain this behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call