Abstract
AbstractFragility plays a pivotal role in performance‐based earthquake engineering, which represents the seismic performance of structural systems. To comprehensively understand the structural performance under seismic events, it is necessary to consider uncertainties in the structural model, i.e., epistemic uncertainties. However, considering such uncertainties is challenging due to computational complexity, leading most fragility analyses only to consider the chaotic behavior of ground motions on structural responses, i.e., aleatoric uncertainties. To address this challenge, this study proposes an adaptive algorithm that intertwines with the conventional fragility analysis procedures to consider both aleatoric and epistemic uncertainties. The algorithm introduces Gaussian process‐based metamodels to efficiently consider epistemic uncertainties with a small number of time history analyses. Steel moment‐resisting frame structures and a reinforced concrete building are used to demonstrate the improved efficiency and wide applicability of the proposed method. In each case, the proposed method yields fragility curves consistent with reference solutions but with substantially lower computational effort. Comprehensive discussions are provided regarding ground motion sets, structural types, and definitions of limit‐states to demonstrate the robustness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.