Abstract

The catalytic oxidation of beta-D-glucose by the enzyme glucose oxidase involves a redox change of the flavin coenzyme. The structure and the dynamics of the two extreme glucose oxidase forms were studied by using infrared absorption spectroscopy of the amide I'band, tryptophan fluorescence quenching and hydrogen isotopic exchange. The conversion of FAD to FADH2 does not change the amount of alpha-helix present in the protein outer shell, but reorganizes a fraction of random coil to beta-sheet structure. The dynamics of the protein interior vary with the redox states of the flavin without affecting the motions of the structural elements near the protein surface. From the structure of glucose oxidase given by X-ray crystallography, these results suggest that the dynamics of the interface between the two monomers are involved in the catalytic mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.