Abstract

The structure of the sheath in the presence of energetic particles is investigated in the multi-fluid framework. Based on the orbital motion limited (OML) theory, the dust grain charging inside the sheath of plasma containing energetic particles is examined for the carbon wall, and then the effect of the energetic particles on the stationary dust particle inside the sheath is discussed through the trapping potential energy. It is found that with the increase of energetic ion concentration or energy, the size of dust staying in levitation equilibrium decreases and the levitating position is much closer to the wall. In the case of deuterium ions as energetic ions, the bigger dust particle can be trapped by the sheath than in the case of hydrogen ions as energetic ions. When the energetic electron component is present, the levitating position of dust particle in the sheath depends strongly on the energetic electron. The levitating dust particle is closer to the wall as the energetic electron energy or concentration is increased. In addition, with the increase of temperature of thermal background ion, the size of dust particle trapped by the sheath decreases and the levitating positions of dust particles with the same size radius inside the sheath move toward the wall. Our results can be helpful in investigating the property of the sheath where the energetic particle component is present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call