Abstract
Integrated metasurfaces with diversified functionalities have demonstrated promising prospects for comprehensive implementations in compact 5G/6G communication systems by flexibly manipulating electromagnetic (EM) waves. Increasingly emerged multifunctional metasurfaces have successfully revealed integrated wavefront manipulations via phase gradient arrays, coding apertures, independent polarization control, asymmetric transmission/reflection, etc. However, multifunctional metasurfaces with more degrees of freedom in terms of multi-band/broadband operation frequencies, full-space coverage, and computable array factors are still in dire demand. As a step forward in extending manipulation dimensions, we propose and corroborate a dual-band multifunctional coding metasurface for anomalous reflection, radar cross-section reduction, and vortex beam generation through full-wave analysis and experiment. Our tri-layer meta-device comprises a shared coding aperture of split-ring and cross-shaped resonators sandwiched between two layers of orthogonal wire gratings. With an approach of independent control of a reflection–transmission wavefront under orthogonal polarization states and Fabry–Perot-like constructive interference, the low-cross-talk shared coding aperture features a smooth phase shift and high efficiency for 3-bit coding in the K-band and 1-bit coding in the Ka-band. Both numerical and measured results verify that the proposed coding metasurface can effectively realize full-space EM control and improve the capacity of the information channel, which could be developed for potential applications in multifunctional devices and integrated systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have