Abstract

Food-borne pathogens in dairy products that was contaminated from raw ingredients or improper food handling can cause a major threaten to human health. Here, to construct the pathogens detection, a dual-signal readout fluorescent switching sensor was designed for one-step determination of Staphylococcus aureus (S. aureus), which was a marker of food contamination. Graphene oxide (GO) was used as a fluorescence quencher, while fluorophore-labeled hairpin DNA was used as a donor, resulting in fluorescence resonance energy transfer (FRET) from the fluorophore to GO (signal off). Enzyme-free hybridization chain reaction could generate remarkable signal amplification, which avoided the nonspecific desorption caused by any enzymatic proteins in GO surface. With the strong binding ability of aptamer to S. aureus, a long bifluorescent molecules-labeled double-stranded DNA product was formed, bringing in dual-signal readout responses (signal on). Consequently, a reliable, sensitive and selective sensor was obtained for one-step quantification of S. aureus concentration from 10 to 108 CFU/mL with a detection limit of 1 CFU/mL. Furthermore, satisfactory stability, reproducibility, specificity and good recovery efficiency in milk samples revealed that the proposed sensor could be served as a prospective tool for food safety analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call