Abstract

A silver nanoclusters (AgNCs)/graphene oxide (GO)-based fluorescence sensor was developed for label-free DNA detection through hybridization chain reaction (HCR). A DNA sequence associated with the human immunodeficiency virus (HIV) was selected as a model target. Two DNA probes, hairpin probe 1 (H1) and hairpin probe 2 (H2), were partially complementary. GO was used as an adsorption material to capture the hairpin probes and a selective fluorescence quencher was used to reduce the background signal. Upon addition of AgNO3 and NaBH4, the AgNCs were synthesized at the terminals of the H1 and H2 probes. In the absence of target DNA (THIV), hybridization chain reaction (HCR) could not be triggered due to the stability of H1 and H2 probes. The hairpin probe-protected AgNCs attached to the GO surface, efficiently quenching fluorescence of the AgNCs. Therefore, the system showed very low background. In presence of THIV, the target triggered the chain-like assembly of H1 and H2 through HCR, generating a long chain of H1 and H2 complexes. The HCR product (AgNCs nanowires) could not be adsorbed on the surface of GO; hence, it generated a strong fluorescent signal based on the concentration of the target. Under the optimized conditions, the detection limit of the fluorescence sensor was 1.18nM, and hence it can be applied to clinical samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.