Abstract
PurposeThe purpose of this paper is to control flow separation over a NACA 4415 airfoil by applying unsteady forces to the separated shear layers using dielectric barrier discharge (DBD) plasma actuators. This novel flow control method is studied under conditions which the airfoil angle of attack is 18°, and Reynolds number based on chord length is 5.5 × 105.Design/methodology/approachLarge eddy simulation of the turbulent flow is used to capture vortical structures through the airfoil wake. Power spectral density analysis of the baseline flow indicates dominant natural frequencies associated with “shear layer mode” and “wake mode.” The wake mode frequency is used simultaneously to excite separated shear layers at both the upper surface and the trailing edge of the airfoil (dual-position excitation), and it is also used singly to excite the upper surface shear layer (single-position excitation).FindingsBased on the results, actuations manipulate the shear layers instabilities and change the wake patterns considerably. It is revealed that in the single-position excitation case, the vortices shed from the upper surface shear layer are more coherent than the dual-position excitation case. The maximum value of lift coefficient and lift-to-drag ratio is achieved, respectively, by single-position excitation as well as dual-position excitation.Originality/valueThe paper contributes to the understanding and progress of DBD plasma actuators for flow control applications. Further, this research could be a beneficial solution for the promising design of advanced low speed flying vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.