Abstract

The present experimental study interests in determining the influence of a linear plasma actuator (dielectric barrier discharge) on the development of a separated turbulent shear layer. More specifically, the plasma actuator is used to impose periodic perturbations at the step corner of a backward-facing step. Two different modes of excitation are explored. One concerns the shear layer mode of instability, a mode whose amplification leads to a minimization of the recirculation bubble. The present investigation shows how a dielectric barrier discharge plasma actuator can impose periodic perturbations that excite the shear layer mode and result in a strong regularization of the vortex street. The case of excitation at the shedding mode is also experimentally investigated using a DBD actuator. The measurements show the increase in Reynolds stress caused by this excitation as well as the specific growing mechanism of the shear layer. Indeed, phase-averaged flow measurements highlights the difference in the mechanism of development of the shear layer regarding the type of excitation used, the shear layer mode promoting a growing mechanism by fluid entrainment while the shedding mode enhancing the pairing of successive vortical flow structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.