Abstract
We report the first demonstration of a dual-metal gate complementary metal oxide semiconductor (CMOS) technology using titanium (Ti) and molybdenum (Mo) as the gate electrodes for the N-metal oxide semiconductor field effect transistors (N-MOSFETs) and P-metal oxide semiconductor field effect transistors (P-MOSFETs), respectively. The gate dielectric stack consists of a silicon oxy-nitride interfacial layer and a silicon nitride (Si/sub 3/N/sub 4/) dielectric layer formed by a rapid-thermal chemical vapor deposition (RTCVD) process. C-V characteristics show negligible gate depletion. Carrier mobilities comparable to that predicted by the universal mobility model for silicon dioxide (SiO/sub 2/) are observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.