Abstract

The effect of the control parameters of both high and low frequency sources on a dual-frequency capacitively coupled chlorine discharge is systematically investigated using a hybrid approach, which consists of a particle-in-cell/Monte Carlo simulation and a volume-averaged global model. The high frequency current density is varied from 20 to 80 A m−2, the driving high frequency is varied from 27.12 to 100 MHz, and the driving low frequency is varied from 1 to 13.56 MHz, while the low frequency current density is kept at 1 A m−2. The discharge pressure is maintained at 10 mTorr. Key plasma parameters (including the electron heating rate, the electron energy probability function, the ion flux, the ion energy, and angular distributions) are explored and their variations with the control parameters are analyzed and compared with other discharge chemistries. As the high frequency current increases, the electron heating is enhanced in the sheath region and is diminished in the bulk region, showing a transition of the electron heating from the drift-ambipolar mode to the α mode. The fluxes of ions and high-energy Cl2 molecules reaching the surface decrease with an increase in the driving high frequency, and the average sheath potential is approximately inversely proportional to the driving high frequency. The electron heating rate, the fluxes of and Cl+ ions reaching the surface, and the average sheath potential show little dependence on the driving low frequency, while the profile of the ion energy distribution evolves from a broad bimodal profile to a narrow single-peak profile as the driving low frequency increases, which corresponds to the transition of the discharge from the intermediate frequency regime to the high frequency regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.