Abstract

Coherent anti-Stokes Raman spectroscopy (CARS) is an established technique for gas-phase thermometry in combustion. In this work, rotational CARS in the dual-broadband approach has been investigated for flame thermometry in the product gas of ethylene/air flames in a wide range of equivalence ratios (0.5 < ϕ < 2.5). The nitrogen lines dominated the rotational CARS spectra in the whole equivalence range, but for fuel-lean flames also oxygen lines gave significant spectral contributions. Therefore, the temperature evaluation was based on spectral fitting of both nitrogen and oxygen. Product gas species such as carbon dioxide, water, carbon monoxide, and hydrogen contribute to the non-resonant susceptibility of the gas and influence the nitrogen and oxygen linewidths through collisions. In this work, the main focus was on the influence of these collisions on the nitrogen and oxygen Raman linewidths and consequently the evaluated temperature in the product gas of flames. In the range of studied equivalence ratios with various amounts of different product gas species, the evaluated temperature was raised up to 45 K when including broadening from CO 2, H 2O, and CO on the measured nitrogen and oxygen lines. It was also concluded that H 2O was the main contributor in all non-sooting flames. The influence of the non-resonant susceptibility in the spectral evaluation is discussed, and its coupling to the inclusion of the line broadening from product gas species as well. It has thus been shown that line-broadening effects from product gas species are highly important for quantitative rotational CARS thermometry in flames.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call