Abstract
Rotational coherent anti-Stokes Raman spectroscopy (CARS) has over the years demonstrated its strong potential to measure temperature and relative concentrations of major species in combustion. A recent work is the development and experimental validation of a CO2 model for thermometry, in addition to our previous rotational CARS models for other molecules. In the present work, additional calibration measurements for relative CO2/N2 concentrations have been made in the temperature range 294–1246K in standardized CO2/N2 mixtures. Following these calibration measurements, rotational CARS measurements were performed in a laminar CO/air diffusion flame stabilized on a Wolfhard–Parker burner. High-quality spectra were recorded from the fuel-rich region to the surrounding hot air in a lateral cross section of the flame. The spectra were evaluated to obtain simultaneous profiles of temperature and concentrations of all major species; N2, O2, CO, and CO2. The potential for rotational CARS as a multi-species detection technique is discussed in relation to corresponding strategies for vibrational CARS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.