Abstract

None of the currently available wound dressings exhibit combined antibacterial and anti-inflammatory activity. Using polyelectrolyte complexation (PEC) between a cationic polysaccharide chitosan (CH) and an anionic glycosaminoglycan chondroitin sulfate (CS), we have developed a unique in-situ forming scaffold (CH-CS PEC), which develops at the wound site itself to influence the function of the wound bed cells. The current study demonstrated that CH-CS PEC could induce bacterial cell death through membrane pore formation and increased ROS production. Moreover, possibly due to its unique material properties including medium-soft viscoelasticity, porosity, and surface composition, CH-CS PEC could modulate macrophage function, increasing their phagocytic ability with low TNF-α and high IL-10 production. Faster wound closure and decreased CFU count was observed in an in-vivo infected wound model, with reduced NF-κB and increased VE-cadherin expression, indicating reduced inflammation and enhanced angiogenesis. In summary, this study exhibited that CH-CS PEC has substantial antibacterial and immunomodulatory properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call