Abstract
In the European Fusion Roadmap, one of the main challenges to be faced is the risk mitigation related to the impossibility of directly extrapolate to DEMO the divertor solution adopted in ITER, due to the very large loads expected. Thus, a satellite experimental facility oriented toward the exploration of robust divertor solutions for power and particles exhaust and to the study of plasma-material interaction scaled to long pulse operation, is currently being designed. Clearly, design requirements for this experiment are quite challenging, to account for the extreme operation conditions, which shall be as representative as possible of the DEMO ones, but in a much smaller device and at lower costs. A feasibility assessment has been carried out for the fully superconducting magnet system of the compact Divertor Tokamak Test (DTT) facility project. The overall magnet system is based on NbTi and Nb3Sn Cable-in-Conduit Conductors, and it adopts some of the most recent developments in this field. It consists of 18 Toroidal Field (TF), 6 Poloidal Field (PF) and 6 Central Solenoid (CS) module coils. In order to cope with the machine requirements such as plasma major and minor radii, magnetic field on plasma axis, plasma current, and inductive flux requirement, the Nb3Sn TF coil is characterized by a peak field of 11.4T on the conductor, operating at 46.3kA; the Nb3Sn CS modules are characterized by a peak field of about 13T, with a conductor operating current of 23kA; the PF coils are wound using NbTi conductors operating at a maximum peak field of 4.0T, with operating currents in the range 21kA to 25kA, depending on the PF coil. Profiting of the compact machine size, and thus of relatively short conductor lengths, the TF coil winding pack is conceived as layer wound and made of two distinct sections, a low- and a high-field one, employing different superconductor cross-sections, and electrically connected through an embedded “ENEA-type” joint.The main features of the magnet system are described here; the results of mechanical, electrical and thermo-hydraulic analyses, which are discussed here, indicate that the proposed design fulfills all the required criteria. In addition, a brief description of the In-Vessel coils is given, though they are not superconducting, for the sake of completeness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.