Abstract

Existing clustering-based methods for segmentation and fiber tracking of diffusion tensor magnetic resonance images (DT-MRI) are based on a formulation of a similarity measure between diffusion tensors, or measures that combine translational and diffusion tensor distances in some ad hoc way. In this paper we propose to use the Fisher information-based geodesic distance on the space of multivariate normal distributions as an intrinsic distance metric. An efficient and numerically robust shooting method is developed for computing the minimum geodesic distance between two normal distributions, together with an efficient graph-clustering algorithm for segmentation. Extensive experimental results involving both synthetic data and real DT-MRI images demonstrate that in many cases our method leads to more accurate and intuitively plausible segmentation results vis-a-vis existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.