Abstract
Tensors are nowadays an increasing research domain in different areas, especially in image processing, motivated for example by diffusion tensor magnetic resonance imaging (DT-MRI). Up to now, algorithms and tools developed to deal with tensors were founded on the assumption of a matrix vector space with the constraint of remaining symmetric positive definite matrices. On the contrary, our approach is grounded on the theoretically well-founded differential geometrical properties of the space of multivariate normal distributions, where it is possible to define an affine-invariant Riemannian metric and express statistics on the manifold of symmetric positive definite matrices. In this paper, we focus on the contribution of these tools to the anisotropic filtering and regularization of tensor fields. To validate our approach we present promising results on both synthetic and real DT-MRI data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.