Abstract

High heat capacity and constant operation temperature make a 2-phase heat remover tool promising for solving high heat dissipation problems in MEMS devices. However, microscale analysis of the flow with the conventional Navier–Stokes equation is inadequate, because the non-continuum effect is important when the characteristic dimension is comparable to the local mean free path. DSMC is a direct, particle-based numerical simulation method that uses no continuum assumption. In this paper, the gas–liquid boundary effects in microchannel flow are studied using this method. Modified DSMC code is used to simulate low-speed flow—under which viscous heating produces no significant temperature change—and MD results are incorporated into the DSMC boundary condition. Steady Couette flow simulation results show that the gas–liquid boundary affects the density distribution and the temperature dependence of the slip velocity. Unsteady simulation results show that mass transfer by diffusion is faster than momentum transfer by collision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.