Abstract

Power compensation differential scanning calorimetry (DSC) has been employed to detect and analyse precipitation reactions in an Al–1.3Mg–0.4Mn and an Al–1.3Mg–0.4Mn–0.07Cu alloy in which very small amounts of precipitate, less than 0.3 at.%, are expected to form. Due to the very small heat effects, baseline instability and drift significantly interfere with the measurements. After repeated experiments and careful baseline correction it is demonstrated that in the Cu containing alloy, ageing at 170 °C causes the appearance of two endothermic effects: for 2 days ageing a small dissolution effect appears at about 230 °C, whilst for 7 and 21 days ageing a dissolution effect peaking appears at about 300 °C. The temperature range of the latter is consistent with S phase dissolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.