Abstract
Hackmanite has received extensive attention from scholars in recent years. However, there is still no report on the thermoluminescence properties of natural hackmanites under UV irradiation, as well as its relative electron trap and luminescence center. In this paper, the structural defects and thermoluminescence spectroscopic properties of hackmanite are comprehensively characterized by XRD, TL spectroscopy, SEM, EPR, XPS and Raman spectroscopy. The traps depth of TL peaks are calculated by computerized glow curve deconvolution (CGCD) techniques. And the charge transition energy levels of intrinsic defects in Na8Al6Si6O24(Cl,S)2 are calculated by spin-polarized density-functional theory (DFT) in VASP. It shows that the low-temperature TL peaks of hackmanite are associated with Cl vacancies and photochromic properties. The high-temperature peak is caused by marginal oxygen vacancies. The results are conducive to deepening the understanding of structural defects of the hackmanites and linking the thermoluminescence with the phototropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.