Abstract

The study of enzyme kinetics is of high significance in understanding metabolic networks in living cells and using enzymes in industrial applications. To gain insight into the catalytic mechanisms of enzymes, it is necessary to screen an enormous number of reaction conditions, a process that is typically laborious, time-consuming, and costly when using conventional measurement techniques. In recent times, droplet-based microfluidic systems have proved themselves to be of great utility in large-scale biological experimentation, since they consume a minimal sample, operate at high analytical throughput, are characterized by efficient mass and heat transfer, and offer high levels of integration and automation. The primary goal of this review is the introduction of novel microfluidic tools and detection methods for use in high-throughput and sensitive analysis of enzyme kinetics. The first part of this review focuses on introducing basic concepts of enzyme kinetics and describing most common microfluidic approaches, with a particular focus on segmented flow. Herein, the key advantages include accurate control over the flow behavior, efficient mass and heat transfer, multiplexing, and high-level integration with detection modalities. The second part describes the current state-of-the-art platforms for high-throughput and sensitive analysis of enzyme kinetics. In addition to our categorization of recent advances in measuring enzyme kinetics, we have endeavored to critically assess the limitations of each of these detection approaches and propose strategies to improve measurements in droplet-based microfluidics. Graphical abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call