Abstract

Observations are presented of several novel phenomena involved in the dynamics of a pendant drop of viscoelastic micellar fluid falling through air. Generally, when a drop falls a filament forms connecting it to the orifice; the filament eventually breaks due to an instability. The filament dynamics and instabilities reported here are very different from the standard Newtonian and non-Newtonian cases. At low surfactant concentration, the cylindrical filament necks down and pinches off rapidly (∼10 ms) at one location along the filament. After pinch-off, the free filament ends retract and no satellite drops are produced. At higher concentrations, the pinch-off also occurs along the filament, but in a more gradual process (∼1 s). Furthermore, the free filament ends do not fully retract, instead retaining some of their deformation. The falling drop is also observed to slow or even stop (stall) before pinch-off, indicating that sufficient elastic stress has built up to balance its weight. We investigate this stall by generalizing Keiller’s simple model for filament motion [J. Non-Newtonian Fluid Mech. 42 (1992) 37], using instead the FENE-CR constitutive equation. Numerical simulations of this model indicate that stall occurs in the range of low solvent viscosity, high elasticity, and high molecular weight. At the highest concentrations, we observe a surface “blistering” instability along the filament long before pinch-off occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.