Abstract
Rayleigh-Bénard convection in square closed cavities filled with Oldroyd-B fluid was studied using OpenFOAM-based RheoTool. For the RBC in Newtonian fluids, the transition always occurs from conduction to steady state convection with increasing Rayleigh number (Ra). On the other hand, the viscoelastic fluids may also show the transition from conduction to oscillatory convection. Further increase in Ra may result in a steady state convective solutions. It is further noted that the behavior is similar to Newtonian fluids for larger values of viscosity ratio (B). Considering the abovementioned different flow behavior at different values of the parameters, it is noted that there are five different types of solutions possible for the viscoelastic fluids viz. pure conduction (PC), one roll periodic oscillations (ORPO), one roll steady state (ORSS) convection, two roll periodic oscillations (TRPO), simultaneous one and two roll steady state convection. Therefore, a bifurcation diagram in the parametric space of Ra and B is presented, depicting these five regions corresponding to each type of solution. The boundaries of these regions have been identified by numerical simulation. Note that all these regions exist in the laminar flow regime, and the transition to turbulence is not considered here. Interestingly, at low values of B, as one increases Ra, it is seen that the ORSS region is sandwiched between ORPO and TRPO. The likely reason for this interesting behavior is explained. Moreover, representative solutions in each region in terms of isotherms, streamlines, and vector plots have been included to demonstrate the dynamics of each delineated region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.