Abstract

Because of its different current injection mechanism, a tunnel field-effect transistor (TFET) can achieve a sub-60-m/decade subthreshold swing at room temperature, which makes it very attractive in replacing a metal-oxide semiconductor field-effect transistor, particularly for low-power applications. It is well known that some specific TFET structures show a good drain current I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</sub> saturation in the output characteristics, whereas other structures do not. A detailed investigation, through extensive device simulations, of the role of the channel on the drain-potential dependence of double-gate TFET characteristics is presented in this paper for the first time. It is found that a good saturation of I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</sub> is observed only for devices in which a thin silicon body is used. A relatively thick silicon body or gate-drain underlaps result in the penetration of the drain electric field through the channel, which does not allow the drain current to saturate, even at higher drain voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.