Abstract

In this work we propose a physics-based analytical model of nanowire tunnel FETs, which is meant to provide a fast tool for an optimized device design. The starting point of the model is the Landauer expression of the current for 1D physical systems, augmented with suitable expressions of the tunneling probability across the tunnel junctions and the whole channel. So doing, we account for the ambipolar effect, as well as for the tunnel-related leakage current, which becomes appreciable when small band-gap materials are used. The model is validated by comparison with numerical simulation results provided by the k·p technique. With this model we examine the problem of the non-linear output characteristics of tunnel FETs, and the related small drain conductance at low drain voltage, which prevents rail-to-rail logic switching, and design a nanowire TFET by an appropriate selection of the material, nanowire size and degeneracy levels in the source and drain regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.