Abstract

Straightedge-and-compass construction problems in Euclidean geometry are known, at times, to be unsolvable. In such cases, additional mathematical tools, such as the Archimedean spiral, may yield a solution. Dynamic geometry (DG) environments suggest adding another mathematical tool as an alternative to the classical approach to geometric constructions: Continuous variation of one of the parameters of the problem. Adoption of this approach raises both mathematical and didactic issues for discussion. This paper presents several solved problems of triangle construction given data that includes angle bisectors. Some of these problems have been shown to be otherwise unsolvable; others may be solvable, but, to the author’s best knowledge, have not been solved using only classical tools. Presented for solution to a special group of prospective teachers, these problems provided them with the experience of facing the need to justify a DG-based solution mathematically, distinguish a ‘dynamic illustration’ from a self-consistent algorithm and refer to mathematical constraints or ‘rules of the game’ – altogether a challenging and fruitful learning opportunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call