Abstract

Students regularly struggle with mathematical tasks, particularly those concerning non-routine problems in geometry. Although educators would like for their learners to transfer their knowledge to non-routine and real-life situations, students run into a number of difficulties. The goal of this exploratory study was to analyze three participants’ problem solving processes in a dynamic geometry software (DGS), and therefore, gain insights about how DGS was used to support solving non-routine geometry problems. Here I viewed the DGS as a cognitive tool that can enhance and reorganize the problem solving process. The three participants were in different phases of their educational career in mathematics and/or mathematics education (bachelor, master, and doctoral student). Only one problem—the Land Boundary Problem—from the TIMSS video study will be discussed here. In this problem, the participants had to straighten a bent fence between two farmers’ land so that each farmer would keep the same amount of land. All three participants solved the problem, but used the same computer-based problem-solving tool differently. While a DGS allowed and supported some participants to discover new methods of thinking, and unanticipated ways of using it, it also inhibited the problem solving processes through development of tool-dependency by some. Its different use was dependent on the presence of managerial decisions, ability to manage different resources, and problem solving experience. Based on these findings, I make recommendations for technology-embedded problem solving with an emphasis on the importance of appropriate tool use in educational settings and offer some teaching methods that may be worthwhile for research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call