Abstract

Downward Looking Sparse Linear Array Three Dimensional SAR (DLSLA 3D SAR) is an important form of 3D SAR imaging, which has a widespread application field. Since its practical equivalent phase centers are usually distributed sparsely and nonuniformly, traditional 3D SAR algorithms suffer from low resolution and high sidelobes in cross-track dimension. To deal with this problem, this paper introduces a method based on back-projection and convex optimization to achieve 3D high accuracy imaging reconstruction. Compared with traditional SAR algorithms, the proposed method sufficiently utilizes the sparsity of the 3D SAR imaging scene and can achieve lower sidelobes and higher resolution in cross-track dimension. In the simulated experiments, the reconstructed results of both simple and complex imaging scene verify that the proposed method outperforms 3D back-projection algorithm and shows satisfying cross-track dimensional resolution and good robustness to noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.