Abstract
The focus of this work is to theoretically investigate the problem of double stratification on heat and mass transfer in an unsteady hydromagnetic boundary layer flow of a nanofluid over a flat surface. The model employed for the nanofluid transport equations incorporate the effects of Brownian motion and thermophoresis in the presence of thermal and solutal stratification. The governing nonlinear partial differential equations and their associated boundary conditions are initially transformed into dimensionless form by using similarity variables, before being solved numerically by employing the Runge–Kutta–Fehlberg fourth-order method with shooting technique. The effects of different controlling parameters, viz. solutal and thermal stratification, Lewis number, thermophoresis, Brownian motion, magnetic field and unsteadiness on the fluid velocity, temperature, skin friction coefficient, the local Nusselt number, and the local Sherwood number are graphically depicted and quantitatively discussed in detail taking into account the practical applications of each profile. It is noted that thermal stratification reduces the fluid temperature, while the solutal stratification reduces the nanoparticle concentration.
Highlights
Magnetohydrodynamics (MHD) boundary layer flow of electrically conducting fluids has diverse industrial and engineering applications in fields such as nuclear reactors, geothermal engineering, liquid metals and plasma flows, petroleum industries, boundary layer control in aerodynamics and crystal growth
In order to ascertain the validity of our numerical procedure, the special case of heat transfer in flow of a convectional fluid in the absence of buoyancy force, flow unsteadiness, magnetic field, and double stratification effect
An increase in Eckert number (Ec), thermophoresis parameter (Nt), Brownian motion parameter (Nb), and magnetic parameter (Ha) yields an increase in both the thermal boundary layer thicknesses and temperature, whereas the reverse is noted with increases in A and β1
Summary
Magnetohydrodynamics (MHD) boundary layer flow of electrically conducting fluids has diverse industrial and engineering applications in fields such as nuclear reactors, geothermal engineering, liquid metals and plasma flows, petroleum industries, boundary layer control in aerodynamics and crystal growth. Several authors have studied the problem of MHD boundary layer flow, heat and mass transfer about different surface geometries in electrically conducting fluids. Makinde [1] numerically analysed the influence of magnetic field on the steady heat and mass flow of an electrically conducting fluid by mixed convection along a semi-infinite vertical porous plate with constant heat flux taking into account Soret and Dufour effects. The effect of the Hall current on the MHD natural convection flow from a vertical permeable flat plate with a uniform heat flux in the presence of a transverse magnetic field was analysed by Saha et al [2]. Rout et al [3] investigated MHD heat and mass transfer of chemically reacting fluid flow over a moving vertical plate in the presence of a heat source with convective boundary condition.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have