Abstract

The interplay of time-reversal and $n$-fold rotation symmetries ($n=2,4,6$) is known to bring a new class of topological crystalline insulators (TCIs) having $n$ surface Dirac cones due to surface rotation anomaly. We show that the proximity-induced $s$-wave superconductivity on the surface of these TCIs yields a topological superconducting phase in which two Majorana zero modes are bound to a vortex, and that $n$-fold rotation symmetry ($n=2,4,6$) enriches the topological classification of a superconducting vortex from $\mathbb{Z}_2$ to $\mathbb{Z}_2\times\mathbb{Z}_2$. Using a model of a three-dimensional high-spin topological insulator with $s$-wave superconductivity and two-fold rotation symmetry, we show that, with increasing chemical potential, the number of Majorana zero modes at one end of a vortex changes as $2\to1\to0$ through two topological vortex phase transitions. In addition, we show that additional magnetic-mirror symmetry further enhances the topological classification to $\mathbb{Z} \times \mathbb{Z}$

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call