Abstract

In this paper, we delve into double Hopf bifurcation induced by memory-driven directed movement in a spatial predator–prey model with Allee effect and maturation delay of predators. We first adopt a novel technique to handle the associated characteristic equation and thus obtain the crossing curves as well as the double Hopf points. We then calculate explicit formulae of normal form regarding non-resonant double Hopf bifurcation. We thus divide the dynamics of the developed model into several categories near the double Hopf bifurcation points. Our numerical and theoretical results both demonstrate that the model can exhibit various complex phenomena when the parameters are near the double Hopf bifurcation points. For example, the transition from one stable spatially inhomogeneous periodic orbit with mode-5 to another with mode-4 and the coexistence of them can be observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.