Abstract

PFG-NMR was used to study the chemical exchange of linear PHEMA having a range of molecular weights with water in DMSO containing varying quantities of water. The aim was to investigate the use of PFG-NMR to study chemical exchange between a polymer with exchangeable protons and a small fast diffusing molecule to provide insight into the conformation adopted by a polymer in solution. The experimental data were simulated closely for the two-site exchange case using the Bloch equations modified for chemical exchange and diffusion. The exchange rate could be used to detect changes in polymer conformation resulting from changes in the solvent. PHEMA of MW 10 000 showed significant time-dependent changes in exchange rate, resulting from preferential solvation of the OH sites by water, and subsequent conformational changes which altered accessibility of the OH sites to water. This behavior was not observed for larger MW PHEMA, which adopted a stable conformation immediately. Large changes in the exchange rate were not reflected in changes to the hydrodynamic radius, suggesting that a minimal overall change in the chain dimensions occurred. DMSO was found to be a poor solvent for PHEMA, which adopts a compact conformation in DMSO. This work has demonstrated that PFG-NMR is a sensitive method for detecting subtle changes in polymer conformation in polymers with exchangeable protons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call