Abstract

Ion bombardment provides an opportunity to study basic properties of intrinsic defects in materials since the radiation-induced disorder accumulation depends on the balance between defect generation and migration rates. In particular, variation of such parameters as irradiation temperature and ion flux, known in the literature as dose-rate effect, interconnects the macroscopically measured lattice disorder with the migration barrier of the dominating defects. In this work, we measured the dose-rate effect in monoclinic gallium oxide (β-Ga2O3) and extracted its activation energy of 0.8 ± 0.1 eV in the range of 25–250 °C. Taking into account that the measurements were performed in the Ga-sublattice and considering 0.8 ± 0.1 eV in the context of theoretical data, we interpreted it as the migration barrier for Ga vacancies in β-Ga2O3, limiting the process. Additionally, we observed and took into account an interesting form of the lattice relaxation due to radiation-induced disorder buildup, interpreted in terms of the compressive strain accumulation, potentially trigging phase transitions in Ga2O3 lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.