Abstract

AbstractIn this work, we have observed by cross-sectional electron microscopy (XTEM) and high resolution electron microscopy (HREM) the kinetics of silicon amorphization during nitrogen and helium bombardments for various dose rates and substrate temperatures. It is shown that the progression of the cla interfaces can be accurately described by the “Critical Damage Energy Density” (CDED) model for both ions at 100°K. At this temperature however, dose rate effects are unimportant. When increasing the substrate temperature up to 300°K, the amorphization efficiency is lowered. At 300°K dose rate effects are important and we show that for higher dose rates, the efficiency of the amorphization process is improved. In this case, the amorphous layers created by helium implantation are situated in the near surface region in apparent contradiction with damage calculations. The present experimental study demonstrates the competition which exists between the generation rate of point defects and the anihilation rate of these defects. Therefore, it is shown that the position of the a-layers created by light ion implantation at room temperature can be predicted by using a three-dimensional damage energy calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.