Abstract

The increased human activities and the worldwide population growth are constantly increasing the production of solid wastes. Over the years, waste management has thus become a prominent issue for several companies and municipalities, and several engineering techniques have been developed over the years in order to convert wastes into other solid materials or fuels. Yet, several techniques are important contributors to environmental pollution, and biological-based solutions have thus become progressively very popular. In particular, insect-based conversion of organic wastes represent eco-friendly tools, and the growth and development of insect species such as the black soldier fly have been tested and improved for a large diversity of organic wastes. However, organic wastes, including food wastes, may contain several pollutants such as heavy metals and catechol which could affect the bioconversion efficiency by incurring physiological costs that would be undetectable at the organismal level, i.e. have null to little effects on the life cycle of Hermetia illucens. In this context, assessments of antioxidant capacities can provide a rapid and low-cost evaluation of the capability of insects to handle exposure to heavy metals and catechol. Here, we aimed at measuring the physiological responses of the black soldier fly H. illucens grown on food wastes (kitchen, fruit or vegetable wastes) contaminated by cadmium, iron, lead or catechol. Biomarkers of oxidative stress (concentrations of hydrogen peroxide and protein carbonyls), non-enzymatic total antioxidant capacity (ascorbic acid amounts) and activity of enzymatic antioxidants (activities of superoxide dismutase and polyphenoloxidase) were measured from the gut of the larvae. We found no evidence of deleterious impacts of food waste contamination by catechol or heavy metals on H. illucens. In most experimental treatments, the array of physiological endpoints we measured for evaluating the degree of oxidative stress experienced by the larvae remained similar to controls. Possible physiological effects were reported for cadmium and catechol only, which tended to increase the oxidation of proteins and hydrogen peroxide in the larvae. Finally, our results suggested that the nature of the food waste could equally affect the physiological responses of the insect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call