Abstract

The addition of a single nucleotide to a short oligonucleotide, catalyzed by RNA polymerase (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) in the presence of synthetic DNA templates, has been studied. The reactions A-U + ATP leads to A-U-A and U-A + UTP leads to U-A-U occur in the presence of poly[d(A-T)], while the reactions G-C + GTP leads to G-C-G and C-G + CTP leads to C-G-C take place in the presence of poly[d(I-C)]. These reactions proceed with a turnover of enzyme. The products U-A-U and C-G-C are formed rapidly, while A-U-A and G-C-G are formed much more slowly. Another poly[d(A-T)]-dependent reaction, which occurs with a turnover of enzyme, is U-A-U + ATP leads to U-A-U-A. All of these reactions are only partially inhibited by rifampicin. ATP can be replaced by 3'-deoxyadenosine 5'-triphosphate in the reactions A-U + ATP leads to A-U-A and U-A-U + ATP leads to U-A-U-A, though the rate of formation of the products becomes somewhat slower. The reactions involving 3'-deoxyadenosine 5'-triphosphate are almost completely inhibited by rifampicin, indicating that the 3'-hydroxyl group is necessary for these reactions to occur in the presence of rifampicin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.