Abstract

Excision repair was measured in normal human and xeroderma pigmentosum group C cells treated with 7,12-dimethylbenz[ a]anthracene 5,6-oxide and with ultraviolet radiation by the techniques of unscheduled DNA synthesis, repair replication, a modification of bromodeoxyuridine photolysis employing the dye Hoechst 33258 and 365 nm radiation, and endonuclease-sensitive sites assay. Radioautography and repair replication showed that in normal cells the magnitude of repair after a saturation dose of the epoxide (approx. 10 μM) to be 0.1–0.2 that after a saturating ultraviolet dose (20 J/m 2 at 254), though survival data showed that both doses gave nearly similar killings. Repair was of the long-patch type and repair kinetics after the epoxide treatment were similar to ultraviolet. After a combined treatment with both agents, unscheduled synthesis in normal cells was more than additive, although, considering the experimental errors, these data and those of repair replication are consistent with additivity. The epoxide did not inhibit loss of sites sensitive to the ultraviolet endonuclease. However, after a combined treatment to xeroderma pigmentosum cells there was appreciably less unscheduled synthesis than for the sum of both treatments and the epoxide inhibited the loss of nuclease-sensitive sites. We interpret the data to indicate that there are different rate-limiting steps in the removal of the ultraviolet and the epoxide damages, and that the residual repair activity in xeroderma pigmentosum cells is accomplished by different, not just fewer, enzymes than in normal cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call