Abstract

Moderate grazing has been widely proven to improve ecosystem functioning and have profound effects on the carbon cycling and storage in grassland ecosystems, which highly depend on grazing duration and grassland type. However, the effects of moderate grazing durations on carbon sequestration with different grassland types over broad geographic scales across China remain underexplored in the context of striving for carbon neutrality. Here, we explored the probably different responses of carbon sequestration to moderate grazing duration for temperate and alpine grasslands based on 129 published literatures regarding the China's grasslands. The results showed the soil organic carbon stocks were significantly increased during short-term (<5 years) grazing duration, while significantly decreased during medium- (5–10 years) and long-term (≥ 10 years) grazing durations in temperate grasslands. However, the soil organic carbon stocks were significantly decreased during short-term grazing duration, while showed no significant changes during medium- and long-term grazing durations in alpine grasslands. The changes in soil organic stock were significantly positively correlated with the changes in belowground biomass, root:shoot, and microbial biomass carbon (P < 0.05). These findings suggest that the temperate grasslands change from carbon sink to carbon source with moderate grazing duration increasing, while the alpine grasslands present an opposite change pattern from carbon source to carbon sink, regulated by grazing-altered carbon input and microbial activities. Our study might have significant implications for future sustainable management practices for carbon sequestration of China's grasslands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.