Abstract

For a rank two root system and a pair of nonnegative integers, using only elementary combinatorics we construct two posets. The constructions are uniform across the root systems A1+A1, A2, C2, and G2. Examples appear in Figures 3.2 and 3.3. We then form the distributive lattices of order ideals of these posets. Corollary 5.4 gives elegant quotient-of-products expressions for the rank generating functions of these lattices (thereby providing answers to a 1979 question of Stanley). Also, Theorem 5.3 describes how these lattices provide a new combinatorial setting for the Weyl characters of representations of rank two semisimple Lie algebras. Most of these lattices are new; the rest of them (or related structures) have arisen in work of Stanley, Kashiwara, Nakashima, Littelmann, and Molev. In a future paper, one author shows that the posets constructed here form a Dynkin diagram-indexed answer to a combinatorially posed classification question. In a companion paper, some of these lattices are used to explicitly construct some representations of rank two semisimple Lie algebras. This implies that these lattices are strongly Sperner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.